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Self-organized localization of macrostates by additive noise in a fast-slow dynamical
system: Effect of the slow nonreactive mode on the barrier crossing rate of
the fast, bistable mode

Vladimir Chinarov and Michael Menzinger
Department of Chemistry, University of Toronto, Toronto ON, Canada M5S 3H6
(Received 9 December 1999

We have studied the stochastic dynamics of a two-dimensional gradient system composed of a fast, bistable
mode and a slow, monotonically decaying mode. The coupling is bidirectional and cooperative. Additive white
noise acts on the fast mode only. We find that the noise intensity controls the location of macfebtgtesof
the probability density function the appearance of bimodality in the slow-mode probability distribution and,
together with the coupling strength, the rate of fast-mode barrier crossing. These features arise from the
interplay of noise, widely separated time scales, and bidirectional, excitatory coupling. They are believed to be
generic.

PACS numbds): 05.40—a

[. INTRODUCTION as a gradient system based on a poteial,Q). It is for-
mally related to the Fitzhugh-NaguntBN) model of neuro-
The stochastic dynamics of two-dimensior@D) sys-  nal firing [19,20 except that the variables in the latter are

tems with widely separated time scales has provided insigh@symmetrically and antagonistically coupled. This prevents

[1-5] into the ways in which external noise may qualita- the FN model from being a gradient system.

tively and quantitatively alter and control their deterministic ~ We find that the system’s nontrivial stochastic dynamics

dynamics. Minimal dynamical models may be obtainediS governed by the interplay of the asymmetry of noise ap-

through(adiabati¢ elimination of fast modes that are nones- Plied to fast system onlythermal gradient the time-scale

sential to the qualitative dynamics. In this sense, the modeieParation and the nature of the coupling. This dynamics
Qwanlfests itself as follows(1) Through the noise-induced

which we study in this paper, lies at the limit of adiabatic Shift. of the probability density function(PDR thse
maxima correspond to the most probable macroscopic states

reducibility. Embedded in a fluctuating environment, such Co
system may be viewed as representing the fast reactive aarg 1]._In ot_her words, the noise-induced macrostates may be
[Ocalized in phase spad®,10,11, where noise acts as the

SITV\tl r:jo:lreactlv(je rlnofdtis of ?_ Iarg(;je b'omme?@}g I ﬁ alsol _control parameter2) In a certain range of parameter space
related 1o a modet of the gating dynamics ot 1on channels Mo jncludes the noise intensity, the slow-mode probability

biomembrane$6, 7]. _ _ distribution is unimodal at low and at high values of noise,

Since “interesting” stochastic effects, such as shifts of, ;i 4t intermediate levels of noise it develops a second
probability density functions and their peaks, the macroynaximum—the phenomenon of noise-induced bistability
scopic state$8], the appearance of noise-induced bistability[g 11]. (3) Closely related to these transformations of the
[9] and stabilization of unstable statfs0,11], require the  stationary probability density is the modification of transition
action of multiplicative noise as long as the system is onerates in the bistable, fast mode and of the relaxation time
dimensional, many of the studies of stochastic dynamics ofrom the top of the saddle point of the potential to the sto-
2D SyStemS were performed W|th multiplicative nOise. But inchastic macrostate by the nonreactive mode_ We f|nd evi_
higher dimensional dynamical systems, bidirectional modegence of noise-induced “locking” of the system in the reac-
coupling (Fig. 1) may lead to a qualitatively similar, effec- tant well due to the localization of the slow mode, of noise-
tively quasimultiplicative response, even if the noise is addiinduced stabilizatiofi8] of the unstable state at the top of the
tive. barrier, and of noise-induced slowing-doW21,22 of the

A further issue is the influence of slow, nonreactive yg|axation rate.
modes) on the barrier-crossing dynamics of the fast reactive  The paper is organized as follows. In Sec. II, we introduce
mode, a Brownian particle moving in a double-well potentialthe dynamical model, and analyze it numerically in Sec. III.
[12]. The problem of relaxation of a probability distribution, |5 particular, we study the relevant probability density distri-

located initially at the maximum of a double-well potential, putions, i.e., their change in position and topology as a func-
as well as the problem of diffusion in stochastic systems

were studied by many authors in one-dimensidi&-15 ©
and multidimensional cas¢$6—-18§.

The goal of this paper is to study the dynamics of a sys- > 1 at) QM
tem composed of a fast, bistable mode that is linearly, sym- ®

metrically and cooperatively coupled to a slow, nonreactive
mode under the influence of additive noise acting on the fast FIG. 1. Schematic of the energy flow from the heat bath into the
subsystem. For convenience, this system may be formulatefdst subsystem followed by bidirectional coupling and dissipation.
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tion of noise intensity, and their relaxation to an asymptotic, 459
stationary distribution. The numerical results are then com-
pared with approximate solutions of the relevant Fokker-
Planck equation derived in Appendix A. The second focus is

the study of the rate of the fast mode barrier crossing in the-'— 0
presence of the slow mode. The barrier-crossing rate is com o
pared with the 1D Kramers’ result. Finally, we study the ~ o~
relaxation from the saddle point to the stationary macrostate

The results are summarized and discussed in Sec. IV. > 150

II. MODEL AND BASIC EQUATIONS

Consider the following dynamical system composed of a -300
fast, bistable modg and a slow, linearly decaying modg -500
They are linearly coupled, subjected to noise, and dimen-
sionless:

aqlat=q—g*+c,Q+ 2D £4(1), (1a 500 -40
1 _
7 29Q/3t=—Q+Co0+ 2D 2é,(1), (1b) FIG. 2. The potentiat/(q’,Q’;c,7) atc=0.5, 7=0.001, scaled

wherec,,c, are the coupling strengths andr<1) is the g’,Q’ (Appendix B. Dimensionless units are used hereafter.

time-scale paramete;,D, are the intensities of the statis- i . . .
tically independent, additive stochastic forcggt), (1), metry properties of the probability density function, we con-

where&(t) is a Gaussian white noise defined (t))=0, sider l:_)riefly the gradient system describe_d by E2R). In _
(&(1&(t'))=8;8(t—t'). In the general case, the sub- thg _nO|se-fre,e cad,9=0, the system settle§ |nt(_) the potential
systems have different temperatufég]. Here we study the Minima at @min,Qmin), Which are symmetric with respect to
nontrivial dynamics of the limiting case,=0. The opposite the origin but asymmetric at constant slow coordin@xe
caseD;<D, was studied in a Hamiltonian systit2,23. ~ =const.  Consequently, ~ the  probability — density
The bistable mode represents a reaction coordinate—oneP(Q".0’;¢,7,D) at nonzero noise is also asymmetric for a
well (say, the left onpcorresponding to reactants and the Wide range ofc, 7 and 0<D <D, and becomes symmetric
other one to products. The slow, monotonically decayingPnly above some valub, of noise. Figure 3 illustrates this
variableQ may be considered as a nonreactive mode. asymmetry of the stationaryasymptoti¢ probabilities
The signs of the coupling coefficients ,c, determine P%(@),P(Q) for D=0.16 (unscaled variableQ,q are used
different classes of dynamical model. When the coupling cohereaftey. Since the mean value of the slow mo@@) #0
efficients have opposite signs, the interactions may be eithd@nd the potentiaV(q’,(Q))] is asymmetric at this noise
excitatory €,>0), or inhibitory (c;<0). Such systems can- level, the fast subsystem spends more time in the left well of
not be gradient systems. A well-known example is thethe potentialFig. 2). This asymmetry depends on the sign of
Fitzhugh-Nagumo moddt19,20,, defined by Eq(1), ¢;>0 the cou_plmg constants—reversing their sign also inverts the
and c,<0. Stochastic versions of the FN model wi, ~ Population of the wellgFig. 3(c)]. o _
<D, have been studief,5,24. Figure 4 traces lthe evolution of this b|modallty @
By a change of variables, E€l) may be transformed into through the nonstationary PDR{(q,Q;N) for different val-
a gradient system as outlined in Appendif/®y. (B2)]when  ues of the observation time given byNh, whereN is the
both coupling coefficients are positive,(,c,>0), i.e., with ~ number of integration time steps. The initial cond.mons for
cooperative (excitatory type of interactions. The corre- Slow and fast variablefFig. 4a)] were taken at their nega-
sponding potentiaV(q’,Q’;c,7) is shown in Fig. 2. The UtUve steady-state valugsee Eq(1)] in the absence of noise,
numerical studies were, however, done using the originald(0)=—(1+¢c?), Q(0)=q(0)c. The three panels show
untransformed coordinates and H@) using an excitatory P(d,Q:;N) for N=1.0E8, 3.0E8, 5.0E9, and the asymptotic

type of coupling:c;=c,=c>0. approach to the stationary distribution that we denote as
P3(g,Q). A further increase beyontN=5.0E9 does not
IIl. NUMERICAL STUDIES change the probability of panét). We should underline that

the asymptotic stationary distributid??(q,Q) is asymmetric

Different realizations of the processg&) andQ(t) were  [Fig. 4(c)], with its highest peak located in the left well of
obtained by solving Eq(1) by a fourth-order stochastic V(q)=—q?/2+q*4. The same asymmetric distribution will
Runge-Kutta algorithnj25]. The integration time step was be reached regardless of initial conditions. Therefore, there
h=0.01. The cumulative PDP(qg,Q)AV characterizes the exists noP3(q,Q) that is symmetric to that shown in Fig.
statistical properties of the system by following a single tra-4(c). Such symmetry could however, be achieyad shown
jectory over a long time, and counting the frequency within Fig. 3(c)] by inverting the signs of both coupling coeffi-
which it visits a volume elememtV of phase space. The bin cients in Eq.(1), changing the nature of coupling from exci-
width was taken as 0.08 far and 0.024 forQ. tatory (c;>0) to inhibitory (c;<<0).

Keeping in mind that all simulations were made for the A possible reason of the observed asymmetry may be
nongradient case described by Et). to analyze some sym- connected with an interplay of three factors—random forc-
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FIG. 3. Stationary probability density functio®*(Q),P5(q)
for parametersD=0.16, c=0.5, 7=0.001. (a): slow-mode prob-
ability P3(Q); (b): fast-mode probabilityP*(q) ; (c): fast-mode
probability is inverted upon changing from symmetric, cooperative
coupling (c=0.5; full squaresto symmetric inhibitory coupling
(c=—0.5; empty squares

FIG. 4. Time evolution of the cumulative PDIF(q,Q,N) for
. : : D=0.18,c=0.5, 7=0.001.(a) N=1.0x 10% (b) N=3.0x1C% (c)
ing, the type Qf interaction between slow and fgst Su_b'N=5.o><109. For (c) the PDF is stationary.
systems, and different time scales for them. For high noise
(D>0.18), the fast mode switches between its stable stategell of the double-well potentiaV/(q).
in a way typical for noisy driven bistable systefizs15] (see A detailed study of the parameter dependencies of the
below). For the noise intensityp ~0.18, depending on the asymptotic PDFP%(q,Q;D,c,7) reveals further interesting
phase relation of the random force, slow and fast modes, thizatures. Noise-induced bistability appears in the slow mode
slow subsystem tends to negatiffer c>0) or positive(for ~ Q over a narrow rang®,<D<D, of noise, centered near
c<0) steady stategand fluctuates around themwhile the  D=~0.18. Three relevant cases are shown in Figabsub-

fast subsystem spends most of its time in the left or rightcritical D<D,, (b) bistableD,;<D<D,, and(c) supercriti-
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FIG. 5. Dependence of the stationary FEFF,Q) on noise
intensity at7=0.001,c=0.5. (a): D=0.13; (b): D=0.18 (noise-
induced bistability; (c): D=0.28.
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FIG. 6. () Dependence of the locatioi®@) of the slow-mode
stationary PDF maximum on noide for c=0.5, 7=0.001. Full
squares: numerical results. Open circles: analytical prediction from
Fokker-Planck equatiofAl, A4). (b) Dependence of mean relax-
ation time(T,) (full square$ and mean residence tind@ ¢ (full
circles on noiseD. Parameters as if@).

slow coordinate under the control of noise, Figa)éshows
the position of the most probable val(@) of the slow vari-
able as a function of noisB. In terms of the gradient case
descriptior{with a potential function given by E4B1)], this
means that noise “pumps” the system froQ/,,=(1
+¢?)Y2¢/ 7, the minimum of the potential, towak®@)~0 in

the limit of high noise. The shift of the macrostate from the
potential minimum tq Q)~0 has the appearance of a phase
transition, with a turning point nedd~0.18. At this point,
the susceptibility to noise is maximal and noise-induced bi-
stability occurs in its neighborhood. The noise-induced mac-
rostates(Q) (solid squaresagree well with the theoretical
steady-state solutiongopen circleg of the corresponding
Fokker-Planck equatiofAl). The latter were obtained using

cal D>D,. Panel(a (D=0.13) shows pronounced asym- the approximations described by Ed#2) and (A3). The
metry of the fast mode and a unimodal distribution of thenoise dependence of the asymptotic PDF reflects the station-
slow mode. Panglb) (D =0.18) illustrates the bimodal dis- ary aspect of the problem.

tributions and asymmetries of both fast and slow probability A related locking of the fast-mode kinetics by the slow
densities. In panelc) (D=0.28) the slow mode is again mode manifests itself in the reverse process—the relaxation
unimodal, this time centered ne@®) =0, and the fast mode from the saddle point of the potential to the stochastic steady
is now symmetrically bimodal. At higher values of noise, thestate. The mean relaxation ting& ) is obtained as the av-

distribution P(Q) becomes Gaussian.

erage over many realizations of the time required to reach the

To illustrate how the macrostate can be guided along the@reviously calculated stochastic macrost@@D)), starting
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from the saddle point. Figure() (full square$ shows the

corresponding mean relaxation ting€,,) as a function of b °
noise intensity. The curve is strongly nonmonotonic and has 0.5 -
the following features: At low nois€;T ) is rather high and A E

constant, and with increasifg, (T, increases further and
goes through a maximum neBr~0.15, after which it de-
creases sharplghalfway point atD~0.18 to a value near 04 /
zero. The lengthening of the relaxation time above the low- 0 a /
noise value reflects the phenomenon of noise-induces < ®
slowing-down, which was described and analyzed elsewhere T
[21,22. The subsequent, sudden shortening of the relaxation 3

time atD>0.15 is related to the gradual shift of the target HS 0.3 -

macrostaté Q(D)) toward the barrier, i.e., to the shortening /.

of the relaxation path. l o

Figure b) (full circles) shows the dependence of the
mean residence timgT 9 on noise intensityD. This is the wa e S
average time the system spends in the reactant well before ' -
escaping from it by crossing the barrier. With decrea$rig
rises exponentialljFig. 7(a)] and asymptotically approaches I S S A S
infinity at some value oD >0.1 (shown schematically by a .
dashed ling This reflects the fact that the diffusion process C
is highly localized and the slow variab@@ never crosses the
saddle point, while the fast variablke spends much more
time in one of the wells.

Closely related to the shape of the probability density
function is the role of the slow, nonreactive mode on the rate
of barrier crossing and of relaxation from the barrier top. For 2.44
this kinetic aspect we calculated the mean residence times
(T\e9 in the reactant well from single, long trajectories of the
2D system(2,3) and compared them with theoretical predic-
tions[26] for the symmetric, 1D double-well problem.

Figure 7a) shows the dependence ¢f,.9 on noise in-
tensity in Arrhenius representation, for four values of the —3 6]
coupling constant. The Arrhenius parameters are defined N’ n A
by (T,e9=T. exp@AE/D). The result for the uncoupled:( ,_Ci
=0) case, marked by open circles agrees almost perfectly
with  the  theoretical Kramers’ prediction T
=(m/v2)exp(0.2D) for the 1D white noise casg26] de-
picted by the line. As the coupling strength increases from
c=0 to c=0.1,0.3,0.5, the slope or apparent activation en- 4B ]
ergy AE increases nonlinearly, while the preexponential fac- —
tor T.. decreases almost linearly, as shown in Fidp).7Both 4 5 6 7
cooperate in the slowing-down or locking of the fast mode I/D
barrier-crossing rate by its coupling to the slow mode. This

locking of the barrier-crossing rate is par'_[icul_arly Pro- g1, 7. Arrhenius plot of the dependence of mean residence
nounced foc=0.3,0.5, where the apparent activation energ¥ime (1) on noise intensityD for different values of coupling
increases more rapidly than linearly. This relates to the fac{,nsiante at 7=0.001.(a) Solid line: Kramers’ theory prediction
that the probability densit(q,Q) is highly asymmetric and  [2¢]. Simulation results: open circles=0; full circles: c=0.1;
unimodal under these conditiofisee Fig. §)]. triangles:c=0.3; squaresc=0.5. (b) Dependence of apparent ac-

The slow relaxation ab <0.15[Fig. 6b)] is the kinetic  tivation energyAE and preexponential factdF.. (multiplied by a
aspect of the steady-state observatiéig. 5a)] that the  scaling factor of 1pon the coupling constant.

over-the-barrier process does not penetrate into the product . . L
region. ForD>0.15, however, the slow-mode distribution White, additive noise acts on the fast mode only; this could

; ; ; : lized to the case where both subsystems are influ-
begins to show bimodality and the flux penetrates into the’® 9eneralized to the
product region. At the turning poirD=0.18 of Fig. 7o),  heed By 1OB8 WG Terery erperaltes il fhe bon
bimodality of P,(Q) is fully developed[Fig. 5(b)], but(Q)  P'N9 y y y » COOP

. ) erative €;=c,=c¢>0), and linear. The type of coupling—
nglmnn?(tat?/igt reached the saddle point #h(Q) remains cooperative or antagonistic, bidirectional or unidirectional,

linear or nonlinear—crucially determines the system dynam-
IV. SUMMARY AND DISCUSSION ics. The present case is relevant e.g., to enzymatic reactions
where allosteric effects are usually cooperative. Slow-mode
We have studied the stochastic dynamics of a systerdecay is described here by a first-order process that is typical
composed of a fast, bistable and a slow, monostable modéor biochemical reactions.

/ I'CS)
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In the present study, noise is the key control parameter. Its We approximate the PDP3(q,Q), using the following
value D serves in the first place to localize the slow-modefactorization:
distribution P(Q;D) in phase space. While the fast mode is
on average slaved to the slow md@8], note however, that P3(q,Q)=E(q,Q)P%(Q), (A2)
adiabatic elimination ofg would also eliminate the slow-
mode localization, noise-induced bistability and locking ofwhere P3(Q) is the unknown stationary PDF for the slow
transitions. Hence is an essential mode and the mo@&B)  variable and the functio(q,Q) is chosen in such a way
is irreducible. The slow mod&)) exerts a key influence on that it explicitly describes the contribution of the fast diffu-
the effective fast-mode potentidf(q,(Q)), the effective sion process and contains also a coupling term
fast-mode distributior(g,(Q)) and on the reactive kinetics
of the fast mode. E(q,Q)=exp—V(q)/D+cqQ/D), (A3)

The noise intensity serves to localize the slow-mode prob-
ability distribution P(Q;D) in phase space in a self- whereV(q)= —q?/2+q*4. This approximation is justified
organized manner. With increasin®, the distribution by the fact that the numerically obtained fast-mode distribu-
changes from unimodal to bimodétoise-induced bistabil- tion is close to the common 1D bimodal distribution for a
ity) and back to unimodal. In the case of unidirectional cou-bistable potential but is asymmetrical in its shapég. 3).
pling (the fast mode affects only the slow mode, but not viceWe found that this asymmetry is proportional to the coupling
versg, the slow-mode probability densif§(Q) is Gaussian termcqQ.
and is always localized at the origin, while the fast-mode Substituting(A2) and (A3) into (A1) and integrating first
probability densityP(q) is always bimodal and fully sym- with respect tag and then toQ, the resulting expression for
metric. the desired quantit{?$(Q) is obtained as

The coupling affects substantially also the fast mode. Be-
low a critical noise leveD<D,, the probability density
P(q;D) is asymmetric, with the highest asymmetry [t
=0. This reflects the facts thaQ) tends toV,;, asD—0,
and that the effective fast-mode potenti€lg,{Q)) is highly  where
asymmetric in this region. If the initial conditions are chosen )
in a way that they correspond to the léfight) 2D attractor, _ "
the diffusion process will remain in the leftight) well for MX)_J w E(a.X)Aq(x,q)da, (AS5)
D<D;. If one starts at the leffright) 2D attractor in the
bistable case ob;<D<D,, the system spends more time +oo
near the left attractor foc>0 (near the right attractor for M(X):f . E(a,X) uq(x,q)dq, (A6)
€c<0) and the probability density maximum is localized at
the corresponding 2D wells.

Noise-induced bistability is generally associated with
multiplicative noisd 9—11]. Although in the present case the
noise_acts_addi_tively on the fast sul_;system, the bidirectional)\q(x,q):q(qz_ 1)R(x,q) — cXR(x,q) + DR2(x,q) + 7(1
coupling gives it an effectively multiplicative character.

: (Ad)

Q
PS(Q)~exp(—f A(X)/ (x)dx

and the functions\4(x,q) in (A5) and uy(x,q) in (A6) are
given by

The results indicate that the existence of well-separated +cxg/D—cqg?), (A7)
time scales £~0.001) combined with a temperature gradi-
ent and bidirectional, excitatory coupling gives rise to sto- mq(X,q) = T(X—CcQ), (A8)

chastic localization of macrostates. We believe that these re-
sults are generic and that they may be found in physical an@here
biological systems possessing a hierarchy of time scales.
R(x,q)=(cx+q—q%)/D. (A9)
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Introducing the new variableg’'=7"1q, Q'=7Q, t’

APPENDIX A: APPROXIMATE STEADY STATE =t, we can define the potential function by

SOLUTION OF THE FOKKER-PLANCK EQUATION
The steady-state solutioR(q,Q) of the Fokker-Planck V(9',Q";c,7)=—q'?2+7q"*4+ 712Q"*~cy7q'Q’".

equation corresponding to systdf) is given by (B1)
3 s This potential is shown in Fig. 2. It has a saddle point at
dl9al(a—9g”)+cQIP*q,Q) the origin and two minima that are steep along tfieaxis
and very gradual along th®@' axis (since 7<1). They are
— 7(319Q)(— Q+cq)P(q,Q) + (D% dq?) P5(q,Q) =0, located atq,==((1+¢?)/1*% Q}in=0mincT Y2 For Q’

(A1) =0 the potential is the symmetric double-well potential
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along theq’ axis, but the slow-mode biases the fast mode

and the corresponding potentisl{q’,Q’ = const) becomes
increasingly asymmetric fo®' #0 with reactant well ¢’
>0) increasingly deeper than the product well, arde
versa

The corresponding dynamic system

SELF-ORGANIZED LOCALIZATION OF MACROSTATE . ..
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9q'[9t=—aVI19q' + (2DI T &(t), (B2a)
9Q' [ot=—aVIaQ’, (B2b)

is a stochastic gradient system
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