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Self-organized localization of macrostates by additive noise in a fast-slow dynamical
system: Effect of the slow nonreactive mode on the barrier crossing rate of

the fast, bistable mode

Vladimir Chinarov and Michael Menzinger
Department of Chemistry, University of Toronto, Toronto ON, Canada M5S 3H6

~Received 9 December 1999!

We have studied the stochastic dynamics of a two-dimensional gradient system composed of a fast, bistable
mode and a slow, monotonically decaying mode. The coupling is bidirectional and cooperative. Additive white
noise acts on the fast mode only. We find that the noise intensity controls the location of macrostates~shape of
the probability density function!, the appearance of bimodality in the slow-mode probability distribution and,
together with the coupling strength, the rate of fast-mode barrier crossing. These features arise from the
interplay of noise, widely separated time scales, and bidirectional, excitatory coupling. They are believed to be
generic.
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I. INTRODUCTION

The stochastic dynamics of two-dimensional~2D! sys-
tems with widely separated time scales has provided insi
@1–5# into the ways in which external noise may qualit
tively and quantitatively alter and control their determinis
dynamics. Minimal dynamical models may be obtain
through~adiabatic! elimination of fast modes that are none
sential to the qualitative dynamics. In this sense, the mo
composed of a fast, bistable and a slow, monostable m
which we study in this paper, lies at the limit of adiaba
reducibility. Embedded in a fluctuating environment, suc
system may be viewed as representing the fast reactive
slow nonreactive modes of a large biomolecule@5#. It is also
related to a model of the gating dynamics of ion channels
biomembranes@6,7#.

Since ‘‘interesting’’ stochastic effects, such as shifts
probability density functions and their peaks, the mac
scopic states@8#, the appearance of noise-induced bistabil
@9# and stabilization of unstable states@10,11#, require the
action of multiplicative noise as long as the system is o
dimensional, many of the studies of stochastic dynamics
2D systems were performed with multiplicative noise. But
higher dimensional dynamical systems, bidirectional mo
coupling ~Fig. 1! may lead to a qualitatively similar, effec
tively quasimultiplicative response, even if the noise is ad
tive.

A further issue is the influence of slow, nonreacti
mode~s! on the barrier-crossing dynamics of the fast react
mode, a Brownian particle moving in a double-well potent
@12#. The problem of relaxation of a probability distributio
located initially at the maximum of a double-well potentia
as well as the problem of diffusion in stochastic syste
were studied by many authors in one-dimensional@13–15#
and multidimensional cases@16–18#.

The goal of this paper is to study the dynamics of a s
tem composed of a fast, bistable mode that is linearly, s
metrically and cooperatively coupled to a slow, nonreact
mode under the influence of additive noise acting on the
subsystem. For convenience, this system may be formul
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as a gradient system based on a potentialV(q,Q). It is for-
mally related to the Fitzhugh-Nagumo~FN! model of neuro-
nal firing @19,20# except that the variables in the latter a
asymmetrically and antagonistically coupled. This preve
the FN model from being a gradient system.

We find that the system’s nontrivial stochastic dynam
is governed by the interplay of the asymmetry of noise
plied to fast system only~thermal gradient!, the time-scale
separation and the nature of the coupling. This dynam
manifests itself as follows:~1! Through the noise-induced
shift of the probability density function~PDF! whose
maxima correspond to the most probable macroscopic st
@11#. In other words, the noise-induced macrostates may
localized in phase space@8,10,11#, where noise acts as th
control parameter.~2! In a certain range of parameter spa
that includes the noise intensity, the slow-mode probabi
distribution is unimodal at low and at high values of nois
but at intermediate levels of noise it develops a seco
maximum—the phenomenon of noise-induced bistabi
@9,11#. ~3! Closely related to these transformations of t
stationary probability density is the modification of transitio
rates in the bistable, fast mode and of the relaxation ti
from the top of the saddle point of the potential to the s
chastic macrostate by the nonreactive mode. We find
dence of noise-induced ‘‘locking’’ of the system in the rea
tant well due to the localization of the slow mode, of nois
induced stabilization@8# of the unstable state at the top of th
barrier, and of noise-induced slowing-down@21,22# of the
relaxation rate.

The paper is organized as follows. In Sec. II, we introdu
the dynamical model, and analyze it numerically in Sec.
In particular, we study the relevant probability density dist
butions, i.e., their change in position and topology as a fu

FIG. 1. Schematic of the energy flow from the heat bath into
fast subsystem followed by bidirectional coupling and dissipatio
6035 ©2000 The American Physical Society
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6036 PRE 62VLADIMIR CHINAROV AND MICHAEL MENZINGER
tion of noise intensity, and their relaxation to an asympto
stationary distribution. The numerical results are then co
pared with approximate solutions of the relevant Fokk
Planck equation derived in Appendix A. The second focu
the study of the rate of the fast mode barrier crossing in
presence of the slow mode. The barrier-crossing rate is c
pared with the 1D Kramers’ result. Finally, we study t
relaxation from the saddle point to the stationary macrost
The results are summarized and discussed in Sec. IV.

II. MODEL AND BASIC EQUATIONS

Consider the following dynamical system composed o
fast, bistable modeq and a slow, linearly decaying modeQ.
They are linearly coupled, subjected to noise, and dim
sionless:

]q/]t5q2q31c1Q1A2D1j1~ t !, ~1a!

t21]Q/]t52Q1c2q1A2D2j2~ t !, ~1b!

wherec1 ,c2 are the coupling strengths andt(t!1) is the
time-scale parameter.D1 ,D2 are the intensities of the statis
tically independent, additive stochastic forcesj1(t),j2(t),
wherej(t) is a Gaussian white noise defined by^j(t)&50,
^j i(t)j j (t8)&5d i j d(t2t8). In the general case, the su
systems have different temperatures@12#. Here we study the
nontrivial dynamics of the limiting caseD250. The opposite
caseD1!D2 was studied in a Hamiltonian system@12,23#.
The bistable modeq represents a reaction coordinate—o
well ~say, the left one! corresponding to reactants and t
other one to products. The slow, monotonically decay
variableQ may be considered as a nonreactive mode.

The signs of the coupling coefficientsc1 ,c2 determine
different classes of dynamical model. When the coupling
efficients have opposite signs, the interactions may be ei
excitatory (c1.0), or inhibitory (c1,0). Such systems can
not be gradient systems. A well-known example is t
Fitzhugh-Nagumo model@19,20#, defined by Eq.~1!, c1.0
and c2,0. Stochastic versions of the FN model withD2
!D1 have been studied@4,5,24#.

By a change of variables, Eq.~1! may be transformed into
a gradient system as outlined in Appendix B@Eq. ~B2!# when
both coupling coefficients are positive (c1 ,c2.0), i.e., with
cooperative ~excitatory! type of interactions. The corre
sponding potentialV(q8,Q8;c,t) is shown in Fig. 2. The
numerical studies were, however, done using the origi
untransformed coordinates and Eq.~1! using an excitatory
type of coupling:c15c25c.0.

III. NUMERICAL STUDIES

Different realizations of the processesq(t) andQ(t) were
obtained by solving Eq.~1! by a fourth-order stochasti
Runge-Kutta algorithm@25#. The integration time step wa
h50.01. The cumulative PDFP(q,Q)DV characterizes the
statistical properties of the system by following a single t
jectory over a long time, and counting the frequency w
which it visits a volume elementDV of phase space. The bi
width was taken as 0.08 forq and 0.024 forQ.

Keeping in mind that all simulations were made for t
nongradient case described by Eq.~1! to analyze some sym
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metry properties of the probability density function, we co
sider briefly the gradient system described by Eq.~B2!. In
the noise-free caseD50, the system settles into the potenti
minima at (qmin8 ,Qmin8 ), which are symmetric with respect t
the origin but asymmetric at constant slow coordinateQ8
5const. Consequently, the probability dens
P(Q8,q8;c,t,D) at nonzero noise is also asymmetric for
wide range ofc, t and 0,D,D1 and becomes symmetri
only above some valueD1 of noise. Figure 3 illustrates this
asymmetry of the stationary~asymptotic! probabilities
Ps(q),Ps(Q) for D50.16 ~unscaled variablesQ,q are used
hereafter!. Since the mean value of the slow mode^Q&Þ0
@and the potentialV(q8,^Q&)# is asymmetric at this noise
level, the fast subsystem spends more time in the left wel
the potential~Fig. 2!. This asymmetry depends on the sign
the coupling constants—reversing their sign also inverts
population of the wells@Fig. 3~c!#.

Figure 4 traces the evolution of this bimodality inQ
through the nonstationary PDFP(q,Q;N) for different val-
ues of the observation time given byt5Nh, whereN is the
number of integration time steps. The initial conditions f
slow and fast variables@Fig. 4~a!# were taken at their nega
tive steady-state values@see Eq.~1!# in the absence of noise
q(0)52A(11c2), Q(0)5q(0)c. The three panels show
P(q,Q;N) for N51.0E8, 3.0E8, 5.0E9, and the asympto
approach to the stationary distribution that we denote
Ps(q,Q). A further increase beyondN55.0E9 does not
change the probability of panel~c!. We should underline tha
the asymptotic stationary distributionPs(q,Q) is asymmetric
@Fig. 4~c!#, with its highest peak located in the left well o
V(q)52q2/21q4/4. The same asymmetric distribution wi
be reached regardless of initial conditions. Therefore, th
exists noPs(q,Q) that is symmetric to that shown in Fig
4~c!. Such symmetry could however, be achieved@as shown
in Fig. 3~c!# by inverting the signs of both coupling coeffi
cients in Eq.~1!, changing the nature of coupling from exc
tatory (ci.0) to inhibitory (ci,0).

A possible reason of the observed asymmetry may
connected with an interplay of three factors—random fo

FIG. 2. The potentialV(q8,Q8;c,t) at c50.5,t50.001, scaled
q8,Q8 ~Appendix B!. Dimensionless units are used hereafter.
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ing, the type of interaction between slow and fast su
systems, and different time scales for them. For high no
(D.0.18), the fast mode switches between its stable st
in a way typical for noisy driven bistable systems@2,15# ~see
below!. For the noise intensityD;0.18, depending on the
phase relation of the random force, slow and fast modes,
slow subsystem tends to negative~for c.0! or positive~for
c,0! steady states~and fluctuates around them!, while the
fast subsystem spends most of its time in the left or ri

FIG. 3. Stationary probability density functionsPs(Q),Ps(q)
for parameters:D50.16, c50.5, t50.001. ~a!: slow-mode prob-
ability Ps(Q) ; ~b!: fast-mode probabilityPs(q) ; ~c!: fast-mode
probability is inverted upon changing from symmetric, cooperat
coupling ~c50.5; full squares! to symmetric inhibitory coupling
~c520.5; empty squares!.
-
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well of the double-well potentialV(q).
A detailed study of the parameter dependencies of

asymptotic PDFPs(q,Q;D,c,t) reveals further interesting
features. Noise-induced bistability appears in the slow m
Q over a narrow rangeD1,D,D2 of noise, centered nea
D'0.18. Three relevant cases are shown in Fig. 5:~a! sub-
critical D,D1 , ~b! bistableD1,D,D2 , and~c! supercriti-

e

FIG. 4. Time evolution of the cumulative PDFP(q,Q,N) for
D50.18,c50.5, t50.001.~a! N51.03108; ~b! N53.03108; ~c!
N55.03109. For ~c! the PDF is stationary.
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6038 PRE 62VLADIMIR CHINAROV AND MICHAEL MENZINGER
cal D.D2 . Panel~a! (D50.13) shows pronounced asym
metry of the fast mode and a unimodal distribution of t
slow mode. Panel~b! (D50.18) illustrates the bimodal dis
tributions and asymmetries of both fast and slow probabi
densities. In panel~c! (D50.28) the slow mode is agai
unimodal, this time centered near^Q&50, and the fast mode
is now symmetrically bimodal. At higher values of noise, t
distributionP(Q) becomes Gaussian.

To illustrate how the macrostate can be guided along

FIG. 5. Dependence of the stationary PDFPs(q,Q) on noise
intensity att50.001, c50.5. ~a!: D50.13; ~b!: D50.18 ~noise-
induced bistability!; ~c!: D50.28.
y

e

slow coordinate under the control of noise, Fig. 6~a! shows
the position of the most probable value^Q& of the slow vari-
able as a function of noiseD. In terms of the gradient cas
description@with a potential function given by Eq.~B1!#, this
means that noise ‘‘pumps’’ the system fromQmin8 5(1
1c2)1/2c/t, the minimum of the potential, toward̂Q&'0 in
the limit of high noise. The shift of the macrostate from t
potential minimum tô Q&'0 has the appearance of a pha
transition, with a turning point nearD'0.18. At this point,
the susceptibility to noise is maximal and noise-induced
stability occurs in its neighborhood. The noise-induced m
rostates^Q& ~solid squares! agree well with the theoretica
steady-state solutions~open circles! of the corresponding
Fokker-Planck equation~A1!. The latter were obtained usin
the approximations described by Eqs.~A2! and ~A3!. The
noise dependence of the asymptotic PDF reflects the sta
ary aspect of the problem.

A related locking of the fast-mode kinetics by the slo
mode manifests itself in the reverse process—the relaxa
from the saddle point of the potential to the stochastic ste
state. The mean relaxation time^Trel& is obtained as the av
erage over many realizations of the time required to reach
previously calculated stochastic macrostate^Q(D)&, starting

FIG. 6. ~a! Dependence of the location̂Q& of the slow-mode
stationary PDF maximum on noiseD for c50.5, t50.001. Full
squares: numerical results. Open circles: analytical prediction f
Fokker-Planck equation~A1, A4!. ~b! Dependence of mean relax
ation time^Trel& ~full squares! and mean residence time^Tres& ~full
circles! on noiseD. Parameters as in~a!.
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PRE 62 6039SELF-ORGANIZED LOCALIZATION OF MACROSTATES . . .
from the saddle point. Figure 6~b! ~full squares! shows the
corresponding mean relaxation time^Trel& as a function of
noise intensity. The curve is strongly nonmonotonic and
the following features: At low noise,^Trel& is rather high and
constant, and with increasingD,^Trel& increases further and
goes through a maximum nearD'0.15, after which it de-
creases sharply~halfway point atD'0.18! to a value near
zero. The lengthening of the relaxation time above the lo
noise value reflects the phenomenon of noise-indu
slowing-down, which was described and analyzed elsewh
@21,22#. The subsequent, sudden shortening of the relaxa
time at D.0.15 is related to the gradual shift of the targ
macrostatêQ(D)& toward the barrier, i.e., to the shortenin
of the relaxation path.

Figure 6~b! ~full circles! shows the dependence of th
mean residence timêTres& on noise intensityD. This is the
average time the system spends in the reactant well be
escaping from it by crossing the barrier. With decreasingD it
rises exponentially@Fig. 7~a!# and asymptotically approache
infinity at some value ofD.0.1 ~shown schematically by a
dashed line!. This reflects the fact that the diffusion proce
is highly localized and the slow variableQ never crosses the
saddle point, while the fast variableq spends much more
time in one of the wells.

Closely related to the shape of the probability dens
function is the role of the slow, nonreactive mode on the r
of barrier crossing and of relaxation from the barrier top. F
this kinetic aspect we calculated the mean residence ti
^Tres& in the reactant well from single, long trajectories of t
2D system~2,3! and compared them with theoretical pred
tions @26# for the symmetric, 1D double-well problem.

Figure 7~a! shows the dependence of^Tres& on noise in-
tensity in Arrhenius representation, for four values of t
coupling constantc. The Arrhenius parameters are defin
by ^Tres&5T} exp(DE/D). The result for the uncoupled (c
50) case, marked by open circles agrees almost perfe
with the theoretical Kramers’ prediction Tres
5(p/&)exp(0.25D) for the 1D white noise case@26# de-
picted by the line. As the coupling strength increases fr
c50 to c50.1,0.3,0.5, the slope or apparent activation
ergyDE increases nonlinearly, while the preexponential fa
tor T` decreases almost linearly, as shown in Fig. 7~b!. Both
cooperate in the slowing-down or locking of the fast mo
barrier-crossing rate by its coupling to the slow mode. T
locking of the barrier-crossing rate is particularly pr
nounced forc50.3,0.5, where the apparent activation ene
increases more rapidly than linearly. This relates to the
that the probability densityP(q,Q) is highly asymmetric and
unimodal under these conditions@see Fig. 5~a!#.

The slow relaxation atD,0.15 @Fig. 6~b!# is the kinetic
aspect of the steady-state observation@Fig. 5~a!# that the
over-the-barrier process does not penetrate into the pro
region. ForD.0.15, however, the slow-mode distributio
begins to show bimodality and the flux penetrates into
product region. At the turning pointD50.18 of Fig. 7~b!,
bimodality of Ps(Q) is fully developed@Fig. 5~b!#, but ^Q&
has not yet reached the saddle point andP(Q) remains
asymmetric.

IV. SUMMARY AND DISCUSSION

We have studied the stochastic dynamics of a sys
composed of a fast, bistable and a slow, monostable m
s
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White, additive noise acts on the fast mode only; this co
be generalized to the case where both subsystems are
enced by noise with different temperatures@12,27#. The cou-
pling of the subsystems is symmetrically bidirectional, coo
erative (c15c25c.0), and linear. The type of coupling—
cooperative or antagonistic, bidirectional or unidirection
linear or nonlinear—crucially determines the system dyna
ics. The present case is relevant e.g., to enzymatic reac
where allosteric effects are usually cooperative. Slow-mo
decay is described here by a first-order process that is typ
for biochemical reactions.

FIG. 7. Arrhenius plot of the dependence of mean reside
time ^Tres& on noise intensityD for different values of coupling
constantc at t50.001. ~a! Solid line: Kramers’ theory prediction
@26#. Simulation results: open circles:c50; full circles: c50.1;
triangles:c50.3; squares:c50.5. ~b! Dependence of apparent ac
tivation energyDE and preexponential factorT` ~multiplied by a
scaling factor of 10! on the coupling constant.
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6040 PRE 62VLADIMIR CHINAROV AND MICHAEL MENZINGER
In the present study, noise is the key control parameter
value D serves in the first place to localize the slow-mo
distributionP(Q;D) in phase space. While the fast mode
on average slaved to the slow mode@28#, note however, tha
adiabatic elimination ofq would also eliminate the slow
mode localization, noise-induced bistability and locking
transitions. Henceq is an essential mode and the model~2,3!
is irreducible. The slow modêQ& exerts a key influence on
the effective fast-mode potentialV(q,^Q&), the effective
fast-mode distributionP(q,^Q&) and on the reactive kinetic
of the fast mode.

The noise intensity serves to localize the slow-mode pr
ability distribution P(Q;D) in phase space in a sel
organized manner. With increasingD, the distribution
changes from unimodal to bimodal~noise-induced bistabil-
ity! and back to unimodal. In the case of unidirectional co
pling ~the fast mode affects only the slow mode, but not v
versa!, the slow-mode probability densityP(Q) is Gaussian
and is always localized at the origin, while the fast-mo
probability densityP(q) is always bimodal and fully sym
metric.

The coupling affects substantially also the fast mode.
low a critical noise levelD,Dcr , the probability density
P(q;D) is asymmetric, with the highest asymmetry atD
50. This reflects the facts that^Q& tends toVmin as D→0,
and that the effective fast-mode potentialV(q,^Q&) is highly
asymmetric in this region. If the initial conditions are chos
in a way that they correspond to the left~right! 2D attractor,
the diffusion process will remain in the left~right! well for
D,D1 . If one starts at the left~right! 2D attractor in the
bistable case ofD1,D,D2 , the system spends more tim
near the left attractor forc.0 ~near the right attractor fo
c,0! and the probability density maximum is localized
the corresponding 2D wells.

Noise-induced bistability is generally associated w
multiplicative noise@9–11#. Although in the present case th
noise acts additively on the fast subsystem, the bidirectio
coupling gives it an effectively multiplicative character.

The results indicate that the existence of well-separa
time scales (t'0.001) combined with a temperature grad
ent and bidirectional, excitatory coupling gives rise to s
chastic localization of macrostates. We believe that these
sults are generic and that they may be found in physical
biological systems possessing a hierarchy of time scales
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APPENDIX A: APPROXIMATE STEADY STATE
SOLUTION OF THE FOKKER-PLANCK EQUATION

The steady-state solutionPs(q,Q) of the Fokker-Planck
equation corresponding to system~1! is given by

]/]q@~q2q3!1cQ#Ps~q,Q!

2t~]/]Q!~2Q1cq!Ps~q,Q!1~D]2/]q2!Ps~q,Q!50,
~A1!
ts
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We approximate the PDFPs(q,Q), using the following
factorization:

Ps~q,Q!5E~q,Q!Ps~Q!, ~A2!

where Ps(Q) is the unknown stationary PDF for the slo
variable and the functionE(q,Q) is chosen in such a way
that it explicitly describes the contribution of the fast diffu
sion process and contains also a coupling term

E~q,Q!5exp~2V~q!/D1cqQ/D !, ~A3!

whereV(q)52q2/21q4/4. This approximation is justified
by the fact that the numerically obtained fast-mode distrib
tion is close to the common 1D bimodal distribution for
bistable potential but is asymmetrical in its shape~Fig. 3!.
We found that this asymmetry is proportional to the coupli
term cqQ.

Substituting~A2! and~A3! into ~A1! and integrating first
with respect toq and then toQ, the resulting expression fo
the desired quantityPs(Q) is obtained as

Ps~Q!;expS 2EQ

l~x!/m~x!dxD , ~A4!

where

l~x!5E
2`

1`

E~q,x!lq~x,q!dq, ~A5!

m~x!5E
2`

1`

E~q,x!mq~x,q!dq, ~A6!

and the functionslq(x,q) in ~A5! andmq(x,q) in ~A6! are
given by

lq~x,q!5q~q221!R~x,q!2cxR~x,q!1DR2~x,q!1t~1

1cxq/D2cq2!, ~A7!

mq~x,q!5t~x2cq!, ~A8!

where

R~x,q!5~cx1q2q3!/D. ~A9!

APPENDIX B: POSSIBLE SCALING TRANSFORMATION
OF CONSIDERED SLOW-FAST SYSTEM TO A

GRADIENT ONE

Introducing the new variablesq85t21q, Q85tQ, t8
5t, we can define the potential function by

V~q8,Q8;c,t!52q82/21tq84/41t/2Q822cAtq8Q8.
~B1!

This potential is shown in Fig. 2. It has a saddle point
the origin and two minima that are steep along theq8 axis
and very gradual along theQ8 axis ~sincet!1!. They are
located atqmin8 56„(11c2)/t…1/2, Qmin8 5qmin8 ct21/2. For Q8
50 the potential is the symmetric double-well potent



d
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along theq8 axis, but the slow-mode biases the fast mo
and the corresponding potentialV(q8,Q85const) becomes
increasingly asymmetric forQ8Þ0 with reactant well (q8
.0) increasingly deeper than the product well, andvice
versa.

The corresponding dynamic system
F

P.
e ]q8/]t52]V/]q81A~2D/t!j~ t !, ~B2a!

]Q8/]t52]V/]Q8, ~B2b!

is a stochastic gradient system
-

n-

tt.
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